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Abstract. Constitutive models formulated using the stress invariants (p and
q) cannot describe uniquely the deformation and strength of geomaterials under
three principal stresses [1]. Then, the concept of tij has been proposed to
describe uniquely the stress-strain behaviors in general three-dimensional (3D)
stress conditions [2]. This concept was found out from the idea that the frictional
law essentially governs soil behavior. Since the formulation of elastoplastic
model using this concept was described in the previous papers [3, 4], the
meaning of this concept and its usefulness are presented in this paper.
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1 Stress Invariants in 2D Condition

Figure 1 shows the Mohr’s stress circle on s-r plane in two-dimensional (2D) con-
dition. Now, 2D soil models are usually formulated using the normal stress r45°(=s)
and shear stress s45°(=t) on the plane where shear stress is maximized (called smax plane
or 45o plane). On the other hand, Murayama [5] paid his attention not to this plane but
to the plane where the shear normal stress ratio is maximized (called (s/rN)max plane or
mobilized plane), because it is considered appropriate that soil behavior during shear is
governed by the frictional law. The shear normal stress ratios on these planes are
expressed as follows:
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Fig. 1. Two reference planes (smax plane and (s/rN)max plane) expressed on Mohr’s stress circle
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It is noticed that when the principal stress ratio r1/r3 changes from 1 to infinite (the
mobilized angle ɸmo changes from 0o to 90o), the stress ratio s/rN in Eq. (2) can take a
value of 0 to infinite, but the value of stress ratio s45°/r45° expressed by Eq. (1) should
be between 0 and 1. Although 2D model can be formulated using stress invariants, it is
necessary that the stress ratio s45°/r45°(=t/s) is less than 1 when the model is formulated
by the stresses on 45o plane.

2 Octahedral Plane and Spatially Mobilized Plane

In 3D condition, threeMohr’s stress circles between respective two principal stresses can
be drawn. So, there are three 45o planes on which the shear stresses are maximized
between two principal stresses as shown in Fig. 2(a). The plane where these three 45o

planes are combined is called the octahedral plane, which has been usually employed as
the reference plane in constitutive modeling of metals and geomaterials [1]. On the other
hand, three mobilized planes where shear normal stress ratio is maximized between
respective two principal stresses are also described as shown in Fig. 2(b). The specially
mobilized plane (SMP) is defined as the combined plane of these three mobilized planes
[6]. Although the direction cosines of octahedral plane are given by 1
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Here, I2 and I3 are the second and third invariants of the Cauchy stress rij. Also, the
unit symmetric tensor, aij, whose principal values are given by these direction cosines,
can be defined.
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Fig. 2. (a) Octahedral plane and (b) Spatially mobilized plane (SMP)
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3 Formulation of 3D Elastoplastic Models

3.1 Ordinary Modeling Using Stress Invariants (p and q) [1]

The mean stress p and the deviatoric stress q correspond to the normal and in-plane
components of the stress with respect to the octahedral plane as shown in Fig. 3, and
are expressed by Eq. (4) using three principal stresses.
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The yield function (plastic potential) f = 0 is formulated using these stress
invariants, and the plastic strain increments is calculated assuming flow rule (normality
condition) in the Cauchy stress rij.
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Figure 4 shows the yield surface and normality rule in (p, q) plane under triaxial
compression (r1 > r2 = r3; upper half) and triaxial extension (r1 = r2 > r3; lower
half). The yield surface is symmetric with respect to p-axis. Also, stress condition
without tension stress is limited in gray color area. Then, some normal stress becomes
negative when stress ratio q/p becomes larger than the broken lines (r3 = 0) during
elastic deformation or elastoplastic deformation, even if p is positive.
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Fig. 3. Definitions of (p and q)
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Fig. 4. Yield surface on p-q plane and no tension
area
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3.2 Modeling Based on tij Concept [2]

The modified stress tensor tij is defined by the product of aik and rkj as follows:

tij ¼ aikrkj ð6Þ
Its principal values are given by

t1 ¼ a1r1; t2 ¼ a2r2; t3 ¼ a3r3 ð7Þ

The invariants of modified stress (tN and tS) used in tij concept are defined as the
normal and in-plane components of tij to the SMP as shown in Fig. 5.

tN ¼ ON = t1a1 þ t2a2 þ t3a3 ¼ 3I3=I2
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ð8Þ

The yield function f = 0 based on the tij concept is formulated using the stress
invariants (tN and tS) instead of (p and q).
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Figure 6 shows schematically the yield surface in tN − tS plane under triaxial
compression (upper half) and triaxial extension (lower half) in the same way as Fig. 4.
The yield surface is symmetric with respect to the tN-axis. The area where tension stress
does not occur is indicated by gray color area, because r3 is always positive in case of
tN > 0 (see Eq. (8)). Also, there is no tension zone inside of the yield surface. This is
because r3 = 0 condition is satisfied on the vertical axis (tS axis) in Fig. 6.
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4 Meaning of tij Concept

From microscopic observation, Oda [7] showed that, as the stress ratio increases, the
average directions normal to the inter-particle contacts gradually concentrate in the
same direction as the major principal stress (r1). Satake [8] pointed out that the
principal values (u1, u2) of the so-called fabric tensor uij, which represents the relative
distribution of the number of vectors normal to the inter-particle contacts, is approx-
imately proportional to the square root of the corresponding principal stresses.

u1
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� �0:5

ð10Þ

Employing a fabric tensor, Satake [9] also proposed a modified stress tensor r�ij

r�ij ¼
1
3
u�1
ik rkj ð11Þ

Figure 7(a) shows schematically the distribution of inter-particle contacts in 2D
condition. Considering an equivalent continuum, such material exhibits anisotropy
since the stiffness in the r1 direction should be larger than that in the r2 direction with
the increase of stress ratio (see diagram (b)). When adopting an elastoplastic theory, it
is reasonable to treat the soil as an isotropic material by introducing the modified stress
tij in which induced anisotropy is already considered. This is because the normality rule
should hold in the isotropic space, like the transformed space used to analyze seepage
problems in anisotropic ground and others. From Eq. (3), the principal values of aij are
inversely proportional to the square root of the principal stresses, therefore:

a1 : a2 ¼ 1=
ffiffiffiffiffi
r1

p
: 1=

ffiffiffiffiffi
r2

p ð12Þ

It can be noted that aij corresponds to the inverse of the fabric tensor in Eq. (10),
and tij defined by Eq. (6) corresponds to the modified stress in Eq. (11). As shown in
diagram (c), the stress ratio t1/t2 in the modified stress space is smaller than stress ratio
r1/r2 in the ordinary stress space. Then, it is reasonable to assume that the flow rule
(normality condition) holds not in the rij space but in the tij space, because the

Granular material Anisotropic continuum Isotropic continuum

Fig. 7. Induced anisotropy during shear loading and meaning of tij concept
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condition of the anisotropic material in diagram (b) can be considered to be the same as
that of the isotropic material in diagram (c).

5 Verification by Test Data

Figure 8 shows the observed results (dots) of drained triaxial compression and
extension tests on normally consolidated clay and the corresponding calculated results
(curves) based on tij concept. Although models using (p, q) invariants cannot describe
the difference between triaxial compression and extension tests, the model based on tij
concept describes well the observed results. The unique relation between dN*/dS* and
tS/tN in Fig. 9, which is independent of intermediate principal stress, means that the
shape of yield surface is symmetric with respect to tN axis as shown in Fig. 6. Fig-
ure 10 shows the observed and calculated directions of the shear strain increments on
the octahedral plane for true triaxial (r1 > r2 > r3) tests. The calculated directions
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Fig. 10. Observed and calculated directions of shear strain increment on octahedral plane

Fig. 8. Stress-strain relation Fig. 9. Observed stress-dilatancy relation
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describe well the observed tendency that the direction of the shear strain increments
deviates leftward from that of shear stress (radial direction) with the increase in stress
ratio under three different principal stresses. On the other hand, the calculated direc-
tions by ordinary (p, q) model are always radial.
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